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Abstract

Leptin is an important adipocytokine whose main regu-
lative effects on energy metabolism are exerted via acti-
vation of signalling pathways in the central nervous system.
Another important regulator of energy homeostasis is
insulin. The role of direct autocrine leptin effects on
adipose tissue and crosstalk with insulin, in particular in
the thermogenically active brown adipose tissue, remains
unclear. In the present study, we have investigated leptin
secretion and interaction with insulin in highly insulin-
responsive immortalised mouse brown adipocytes. Leptin
was secreted in a differentiation-dependent manner, and
acute leptin treatment of mature adipocytes dose- and
time-dependently stimulated phosphorylation of STAT3
and MAP kinase. Interestingly, acute pretreatment of fully
differentiated brown adipocytes with leptin (100 nM)
significantly diminished insulin-induced glucose uptake

by approximately 25%. This inhibitory effect was time-
dependent and maximal after 60 min of leptin prestimu-
lation. Furthermore, it correlated with a 35% reduction in
insulin-stimulated insulin receptor kinase activity after
acute leptin pretreatment. Insulin-induced insulin recep-
tor substrate-1 tyrosine phosphorylation and binding
to the regulatory subunit p85 of phosphatidylinositol
3-kinase (PI 3-kinase) were diminished by approximately
60% and 40%, respectively. Taken together, this study
has demonstrated strong differentiation-dependent leptin
secretion in brown adipocytes and PI 3-kinase-mediated
negative autocrine effects of this hormone on insulin
action. Direct peripheral leptin–insulin crosstalk may play
an important role in the regulation of energy homeostasis.
Journal of Endocrinology (2002) 175, 185–191

Introduction

Adipose tissue has emerged as an endocrine organ that is
central to the regulation of energy homeostasis (Ahima &
Flier 2000, Shuldiner et al. 2001). The adipocyte-derived
hormone leptin appears to be an important player in this
regard (Friedman et al. 1998, Spiegelman & Flier 2001).
Hypothalamic leptin stimulation regulates the expression
of a number of orexigenic and anorexigenic neuropeptides
which, in turn, results in decreased food intake and
increased energy expenditure mediated via activation of
the sympathetic nervous system (Spiegelman & Flier
2001).

The densely innervated brown adipose tissue is an
effector tissue of the sympathetic nervous system. It
contributes to the regulation of energy homeostasis by
virtue of expression of the mitochondrial uncoupling
protein 1, which uncouples mitochondrial respiration,
thereby providing heat instead of generating ATP
(Nicholls & Locke 1984, Klaus 1997, Lowell & Flier
1997). Similar to white adipose tissue, brown adipose

tissue is highly insulin sensitive. Furthermore, we have
recently shown that immortalised brown adipocytes pro-
vide an excellent model to investigate insulin signalling
and potential insulin resistance-inducing mechanisms
(Fasshauer et al. 2000, 2001, Klein et al. 1999, 2000,
2002). Immortalised brown adipocytes differentiated in
culture resemble mature primary adipocytes with respect
to morphological, molecular and functional characteristics
including adrenergic and insulin sensitivity (Klein et al.
1999, 2002).

Impaired insulin action in white and brown adipose
tissue has been shown to be associated with the develop-
ment of diabetes and features of the insulin-resistance
syndrome (Kahn & Flier 2000, Abel et al. 2001, Guerra
et al. 2001). Expression of the long form of the leptin
receptor has been demonstrated for both white and brown
adipose tissue (Siegrist-Kaiser et al. 1997), but only a few
and controversial reports exist about direct leptin effects on
insulin action. In vivo and in vitro studies in human and rat
white adipose tissue found either negative effects (Muller
et al. 1997, Zhang et al. 1999) or no leptin influence
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at all (Mick et al. 1998, Zierath et al. 1998). For the
thermogenically active brown adipose tissue, direct
crosstalk of leptin with insulin signalling and action is
completely unknown.

Here, we show a robust differentiation-associated
increase in leptin secretion in brown adipocytes.
Furthermore, we demonstrate autocrine negative cross-
talk on the proximal level of insulin signalling which
transiently induces insulin resistance and suggests a patho-
physiologically important direct interaction between these
two signalling systems.

Materials and Methods

Materials

Recombinant mouse leptin was purchased from
Calbiochem, Inc. (San Diego, CA, USA), anti-insulin
receptor substrate (IRS)-1 and anti-p85 antibodies, as well
as recombinant IRS-1, were from Upstate Biotechnology,
Inc. (Lake Placid, NY, USA), and phosphospecific anti-
bodies to STAT3, p44/p42 MAP kinase and Akt
(S473) were from Cell Signaling Technology, Inc.
(Beverly, MA, USA). Anti-insulin (AB3) antibody was
purchased from Oncogen (Cambourne, MA, USA), and
anti-phosphotyrosine antibody (PY11230) from BD
Transduction Laboratories (Heidelberg, Germany). All
other chemicals were from Sigma-Aldrich Co. (St Louis,
MO, USA), unless stated otherwise.

Cell culture

For all experiments, we used SV40T-immortalised brown
adipocytes from the FVB strain of mice generated as
described elsewhere (Klein et al. 1999). Preadipocytes
were grown in Dulbecco’s modified Eagle’s medium (Life
Technologies, Paisley, Strathclyde, UK) supplemented
with 4·5 g/l glucose, 20 nM insulin, 1 nM T3, 20%
fetal bovine serum (Sigma-Aldrich Co., St Louis,
MO, USA) and penicillin/streptomycin (BioWhittaker,
Vervier, Belgium) (differentiation medium). When
confluence was reached, differentiation was induced by
complementing differentiation medium further with
250 µM indomethacine, 500 µM isobutylmethylxanthine
and 2 µg/ml dexamethasone for 24 h. After changing back
to differentiation medium, cell culture was continued for
5 more days before cells were starved for 24–48 h with
serum-free medium prior to carrying out the experiments.

Determination of leptin secretion

From day 5 to day 13 of the differentiating process, culture
medium was removed from the cells every 24 h and
replaced with fresh medium. Leptin release into the

medium was determined using a mouse leptin radio-
immunoassay (Linco Research, Inc., St Louis, MO, USA).

Determination of glucose uptake

Glucose uptake assays were carried out essentially as
described previously (Klein et al. 1999). In brief, cells were
starved in serum-free medium for 48 h and washed
in Krebs–Ringer–HEPES (20 mM HEPES, 136 mM
NaCl, 4·7 mM KCl, 1·25 mM MgSO4, 1·25 mM CaCl2).
After preincubation with 100 nM leptin for varying
periods of time, cells were incubated with 100 nM insulin
for 30 min. 3H-Labelled 2-deoxyglucose (3H-2-DOG;
500 nCi/ml; NEN Life Science Products, Cologne,
Germany) was added for 4 min before cells were washed
in ice-cold phosphate-buffered saline and lysed with 0·1%
SDS. Activity of 3H-2-DOG was measured using a beta
scintillation counter.

Western blotting and immunoprecipitation

Proteins were isolated using whole-cell lysis buffer con-
taining 2 mM vanadate, 10 µg/ml aprotinin, 10 µg/ml
leupeptin and 2 mM phenylmethylsulphonyl fluoride
(Fluka Chemie AG, Neu-Ulm, Germany). Protein con-
tent of lysates was determined by the method of Bradford
(1976) using the dye from Bio-Rad (Hercules, CA, USA).
Lysates were submitted to SDS-PAGE and transferred to
nitrocellulose membranes (Schleicher and Schuell Inc.,
Keane, NH, USA). Membranes were blocked overnight
with rinsing buffer (10 mM Tris, 150 mM NaCl, 0·05%
Tween 20, pH 7·2) containing 3% bovine serum albumin
(BSA) (blocking solution). Membranes were then incu-
bated in blocking solution for 1–2 h with the antibodies
indicated. Protein bands were visualised using the chemi-
luminescence kit from Roche Molecular Biochemicals
(Mannheim, Germany) and enhanced chemilumines-
cence films (Amersham Pharmacia Biotech, Freiburg,
Germany). For immunoprecipitation, lysates were pre-
pared as described above, and respective antibodies
immobilised to protein G-sepharose beads (Pierce,
Rockford, IL, USA) were added for 4 h. Beads were then
washed three times with 10 mM NaCl, 25·5 mM KCl,
200 mM HEPES, 0·05% Igepal, 1% BSA, 8·5% glycerol
and 100 µM Na-vanadate, before protein–antibody com-
plexes were dissolved in 5�Laemmli buffer. Subsequent
immunoblotting was carried out as described above.

Insulin receptor kinase activity assay

After preincubation with 100 nM leptin for varying
periods of time, cells were incubated with 100 nM insulin
for 5 min and whole-cell lysates were prepared. Insulin
receptor kinase activity was determined as described
previously (Klein et al. 1993, Krutzfeldt et al. 2000). In
brief, lysates were added to microwell plates coated
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with anti-insulin receptor antibodies for 24 h at 4 �C.
Incubation of plates with recombinant IRS-1 and �-32P-
ATP (Hartmann GmbH, Braunschweig, Germany) for
2 h followed, before 32P-incorporation into IRS-1 was
measured. Insulin binding to the receptor was determined
with 125I-insulin (Amersham Pharmacia Biotech). Insulin
receptor kinase activity is expressed as extent of IRS-1
tyrosine phosphorylation in relation to insulin binding.

Statistical analysis

Data are presented as means�S.E.M. Statistical analyses
were performed with Sigma Plot (SPSS Science, Chicago,
IL, USA). Statistical significance was determined using
the unpaired Student’s t-test. P values of <0·05 were
considered significant, those of <0·01 highly significant.

Results

Differentiation-dependent leptin secretion in brown adipocytes

In differentiating brown adipocytes, we found a robust
increase in leptin release over two orders of magnitude
during a 13-day differentiation period (Fig. 1). Leptin
levels were first detectable in the culture medium at day 5
at a concentration of 0·1 µg/l and exponentially increased
from day 7 up to maximal concentrations of about 20 µg/l
at day 12 when they reached a plateau (Fig. 1).

Dose- and time-dependent phosphorylation of STAT3 and
MAP kinase by leptin

To confirm leptin signalling in differentiated brown
adipocytes, STAT3 and MAP kinase phosphorylation

were assessed after leptin treatment. Stimulation with
leptin for 5 min resulted in a significant dose-dependent
increase in STAT3 phosphorylation (Fig. 2A).
Furthermore, leptin-induced STAT3 phosphorylation
was time-dependent with a highly significant maximal
increase by about 2-fold after 2 min (Fig. 2B). Also,
phosphorylation of p44/p42 MAP kinase was significantly
induced approximately 2·8-fold after 5 min of leptin
treatment in a time- and dose-dependent manner (Fig. 2C
and D).

Leptin impairs insulin-induced glucose uptake

Given the direct activation of leptin and insulin-signalling
intermediates by leptin, we next investigated potential
metabolic effects of leptin crosstalk with insulin. Glucose
uptake is a classical biological endpoint of insulin signalling
in adipose tissue. Treatment with 100 nM insulin for
30 min induced an approximately 4-fold increase in glu-
cose uptake in differentiated brown adipocytes (Fig. 3A).
Leptin treatment alone did not affect basal glucose uptake.
However, leptin treatment at a concentration of 100 nM
prior to incubation with insulin impaired the insulin-
induced effect (Fig. 3A). This inhibitory effect was time-
dependent and first detectable after 15 min of leptin
prestimulation. A highly significant maximum inhibition
by approximately 25% was observed after 60 min (Fig.
3A). A significant reduction in insulin-induced glucose
uptake was also found after 2 h of leptin pretreatment, but
prolonged periods of leptin exposure for up to 24 h did not
show any significant alterations (data not shown).

Leptin acutely reduces insulin receptor kinase activity

Insulin treatment with 100 nM for 5 min strongly
increased receptor kinase activity (Fig. 3B). Consistent
with the inhibitory leptin effect on insulin-induced glu-
cose uptake, prestimulation of cells with 100 nM leptin
for 5 min significantly decreased insulin receptor kinase
activity by 33% (Fig. 3B). Leptin-mediated inhibition of
receptor kinase activity decreased somewhat after longer
pretreatment periods but was still detectable after 60 min
of leptin preincubation (Fig. 3B).

Leptin inhibits insulin-induced IRS-1 tyrosine phosphorylation
and binding to phosphatidylinositol 3-kinase but not activation
of Akt

IRS-1 is a main proximal insulin-signalling intermediate
that is tyrosine phosphorylated by the activated insulin
receptor kinase and subsequently enables binding and
activation of phosphatidylinositol 3-kinase (PI 3-kinase)
which, in turn, is pivotal in mediating insulin’s metabolic
effects (Kahn 1994, Cheatham & Kahn 1995). IRS-1
tyrosine phosphorylation was strongly induced by insulin
stimulation for 5 min (Fig. 4A). However, similar to

Figure 1 Leptin secretion in brown adipocytes. Culture medium
was taken every 24 h and analysed for leptin content. Results
depicted represent the average�S.E.M. of six independent
experiments.
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inhibition of insulin receptor kinase, leptin pretreatment
(100 nM) significantly reduced insulin-induced IRS-1
tyrosine phosphorylation. Again, the effect was time-
dependent (Fig. 4A). Yet, by contrast to insulin receptor
kinase activity, significant inhibition of IRS-1 tyrosine
phosphorylation was somewhat delayed and appeared to
be biphasic with a maximal 60% inhibition after 60 min of
leptin pretreatment.

Insulin induced an approximately 3-fold increase in
IRS-1 binding to the regulatory subunit p85 of PI
3-kinase (Fig. 4B). Consistent with the kinetics for IRS-1
tyrosine phosphorylation, binding of IRS-1 to p85 was
diminished by leptin stimulation in a time-dependent
biphasic manner with a maximal 50% reduction occurring
after 60 min of leptin preincubation (Fig. 4B).

Akt is an important signalling element downstream of PI
3-kinase. Data regarding its involvement in mediating
glucose uptake are controversial (Kitamura et al. 1998,
Summers et al. 2000, Cho et al. 2001, Hernandez et al.
2001). Insulin stimulation for 5 min strongly induced Akt
activation as assessed using a phosphospecific Akt antibody
(Fig. 4C). Interestingly, this insulin-induced increase was
not altered by leptin pretreatment.

Discussion

This study has demonstrated strong differentiation-
dependent leptin secretion in brown adipocytes and auto-
crine negative effects of this adipocytokine on proximal

Figure 2 Leptin induces STAT3 and MAP kinase (MAPK) phosphorylation. (A and B) Cells were starved in
serum-free medium for 48 h. Subsequently, cells were treated with leptin at the concentrations indicated for
5 min or for the indicated periods of time (1 �M leptin) respectively, and immunoblots of whole-cell lysates
were performed using phosphospecific antibodies to STAT3. (C and D) MAP kinase phosphorylation was
measured by immunoblots using phophospecific p44/p42 MAP kinase antibodies after 10 min of leptin
treatment at the concentrations indicated or for the indicated times at the concentration of 1 �M
respectively. Bar graph analyses with the S.E.M. of at least three independent experiments and representative
immunoblots are shown in each panel. *P<0·05 significant and **P<0·01 highly significant differences as
compared with basal phosphorylation.
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insulin-signalling components resulting in acute and
transient induction of insulin resistance.

Studies of leptin expression and secretion in brown
adipocytes have been inconsistent. While one study failed
to detect leptin (Cinti et al. 1997), others reported either

diminished (Moinat et al. 1995) or normal leptin expres-
sion and secretion in both human and rodent brown
adipocytes (Deng et al. 1997, Zilberfarb et al. 1997, Buyse
et al. 2001) as compared with white adipocytes. In the
present study, we used a well-characterised adipocyte
model of SV40T-immortalised brown fat cells that are
similar to primary brown adipocytes in morphological,
molecular and functional aspects (Klein et al. 1999, 2000,
2002). We found an increase in leptin release over two
orders of magnitude. Thus, our study clearly argues for a
robust and differentiation-dependent leptin expression and
secretion in brown adipose tissue.

Adipose tissue has emerged as an endocrine organ that
is central to the regulation of energy homeostasis and
insulin resistance (Ahima & Flier 2000, Kahn & Flier
2000, Shuldiner et al. 2001, Spiegelman & Flier 2001).
Recent data suggest that selective impairment of insulin
signalling in the thermogenic brown adipose tissue by a
tissue-specific disruption of the insulin receptor gene
induces a diabetic state (Guerra et al. 2001). Interestingly,
our study has demonstrated significant acute negative
effects of leptin on insulin-induced glucose uptake. To our
knowledge, this is the first report on direct leptin inter-
actions with insulin signalling and action in brown adi-
pocytes. In white adipocytes, few and conflicting studies
have been published. While some authors did not find any
effects of leptin on insulin-stimulated glucose uptake in
isolated rat white adipocytes (Mick et al. 1998, Zierath
et al. 1998), others suggest a negative leptin influence on
insulin-regulated metabolic actions including glucose
uptake in both rat and human adipocytes (Muller et al.
1997, Zhang et al. 1999). One possible explanation for the
inconsistency of previous studies in white adipocytes may
be the small and transient character of changes induced
by leptin stimulation. However, in a physiological and
pathophysiological context, these alterations could entail
important chronic metabolic consequences by inducing
long-lasting changes, e.g. in gene expression patterns or
secretion of other adipocytokines implicated in energy
balance regulation.

Consistent with the impairment of insulin-induced
glucose uptake, we have found an inhibition of important
proximal insulin-signalling elements by leptin. Insulin
receptor kinase activity is maximally inhibited after 5 min
of leptin pretreatment and subsequently returns to normal,
whereas kinetics of downstream signalling events and the
final metabolic response are delayed. This may represent
an example for the above-mentioned phenomenon of
acute transient alterations inducing longer-lasting biologi-
cal consequences. The kinetics of IRS-1 tyrosine phos-
phorylation and binding to PI 3-kinase appear to be
biphasic. Furthermore, in contrast to PI 3-kinase activity,
we did not find leptin-mediated alteration of insulin-
stimulated Akt activation which is in line with recent
studies suggesting a dissociation between PI 3-kinase and
Akt in mediating glucose uptake (Kitamura et al. 1998,

Figure 3 Acute leptin pretreatment inhibits insulin-induced glucose
uptake and acutely diminishes insulin-induced insulin receptor
kinase activity. (A) Cells were starved in serum-free medium for
48 h and subsequently exposed to leptin (100 nM) for 15, 30 and
60 min prior to insulin stimulation (100 nM) for 30 min. At the
end of the insulin stimulation period, cells were incubated with
3H-2-DOG (2-DOG) for 4 min, and uptake was measured in a
beta scintillation counter. Bars represent the mean and S.E.M. of ten
independent experiments with triplicate determination of each.
**P<0·01 highly significant differences as compared with insulin
stimulation alone. (B) Cells were starved in serum-free medium for
24 h and treated with 100 nM leptin for 5, 15, 30 and 60 min
prior to 5 min stimulation with insulin (100 nM). Insulin receptor
kinase activity was determined using 32P-labelled IRS-1 as
described in the Methods section. The bar graph analysis
represents the mean of three independent experiments with
duplicate determination. *P<0·05 significant differences as
compared with the insulin-induced response.
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Nadler et al. 2001). Taken together, these findings may
reflect additional signalling pathways, which interact on
several post-receptor levels. Of note, negative leptin
effects on insulin-induced glucose uptake independent of
alterations in proximal insulin-signalling components have
recently been described in skeletal muscle cells (Sweeney
et al. 2001).

In summary, this study has demonstrated
differentiation-dependent leptin secretion in brown
adipocytes and elucidated autocrine insulin resistance-
inducing effects of leptin on major insulin-signalling
components. Direct interactions between these two hor-
monal systems may have important implications for the
control of energy balance.
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